Project Cybersyn: Chile 2.0 in 1973

My colleague Lokman Tsui at the Berkman Center kindly added me to the Harvard-MIT-Yale Cyberscholars working group and I attended the second roundtable of the year yesterday. These roundtables typically comprise three sets of presentations followed by discussions.

Introducing Cybersyn

We were both stunned by what was possibly one of the coolest tech presentations we’ve been to at Berkman. Assistant Professor Eden Medina from Indiana University’s School of Informatics presented her absolutely fascinating research on Project Cybsersyn. This project ties together cybernetics, political transitions, organizational theory, complex systems and the history of technology.

cybersyn_control_room

I had never heard of this project but Eden’s talk made we want to cancel all my weekend plans and read her dissertation from MIT, which I’m literally downloading as I type this. If you’d like an abridged version, I’d recommend reading her peer-reviewed article which won the 2007 IEEE Life Member’s Prize in Electrical History: “Designing Freedom, Regulating a Nation: Socialist Cybernetics in Allende’s Chile” (PDF).

Project Cybersyn is an early computer network developed in Chile during the socialist presidency of Salvador Allende (1970–1973) to regulate the growing social property area and manage the transition of Chile’s economy from capitalism to socialism.

Under the guidance of British cybernetician Stafford Beer, often lauded as the ‘father of management cybernetics’, an interdisciplinary Chilean team designed cybernetic models of factories within the nationalized sector and created a network for the rapid transmission of economic data between the government and the factory floor. The article describes the construction of this unorthodox system, examines how its structure reflected the socialist ideology of the Allende government, and documents the contributions of this technology to the Allende administration.

The purpose of Cybersyn was to “network every firm in the expanding nationalized  sector of the economy to a central computer in Santiago, enabling the government to grasp the status of production quickly and respond to economic crises in real time.”

Heartbeat of Cybersyn

Stafford is considered the ‘Father of Management Cybernetics” and at the heart of Stafford’s genius is the “Viable System Model” (VSM). Eden explains that “Cybersyn’s design cannot be understood without a basic grasp of this model, which played a pivotal role in merging the politics of the Allende government with the design of this technological system.”

VSM is a model of the organizational structure of any viable or autonomous system. A viable system is any system organised in such a way as to meet the demands of surviving in the changing environment. One of the prime features of systems that survive is that they are adaptable.

vsm

Beer believed that this five-tier, recursive model existed in all stable organizations—biological, mechanical and social.

VSM recursive

Synergistic Cybersyn

Based on this model, Stafford’s team sought ways to enable communications among factories, state enterprises, sector committees, the management of the country’s development agency and the central mainframe housed at the agency’s headquarters.

Eventually, they settled on an existing telex network previously used to track satellites. Unlike the heterogeneous networked computer systems in use today, telex  networks mandate the use of specific terminals and can only transmit ASCII characters. However, like the Internet of today, this early network of telex machines was driven by the idea of creating a high-speed web of information exchange.

Eden writes that Project Cybersyn eventually consisted of four sub-projects: Cybernet, Cyberstride, Checo and Opsroom.

  • Cybernet: This component “expanded the existing telex network to include every firm in nationalized sector, thereby helping to create a national network of communication throughout Chile’s three-thousand-mile-long territory. Cybersyn team members occasionally used the promise of free telex installation to cajole factory managers into lending their support to the project. Stafford Beer’s early reports describe the system as a tool for real-time economic control, but in actuality each firm could only transmit data once per day.”
  • Cyberstride: This component “encompassed the suite of computer programmes written to collect, process, and distribute data to and from each of the state enterprises. Members of the Cyberstride team created ‘ quantitative flow charts of activities within each enterprise that would highlight all important activities ’, including a parameter for ‘ social unease ’[…]. The software used statistical methods to detect production trends based on historical data, theoretically allowing [headquarters] to prevent problems before they began. If a particular variable fell outside of the range specified by Cyberstride, the system emitted a warning […]. Only the interventor from the affected enterprise would receive the algedonic warning initially and would have the freedom, within a given time frame, to deal with the problem as he saw fit. However, if the enterprise failed to correct the irregularity within this timeframe, members of the Cyberstride team alerted the next level management […].”
  • CHECO: This stood for CHilean ECOnomy, a component of Cybersyn which “constituted an ambitious effort to model the Chilean economy and provide simulations of future economic behaviour. Appropriately, it was sometimes referred to as ‘Futuro’. The simulator would serve as the ‘government’s experimental laboratory ’ – an instrumental equivalent to Allende’s frequent likening of Chile to a ‘social laboratory’. […] The simulation programme used the DYNAMO compiler developed by MIT Professor Jay Forrester […]. The CHECO team initially used national statistics to test the accuracy of the simulation program. When these results failed, Beer and his fellow team members faulted the time differential in the generation of statistical inputs, an observation that re-emphasized the perceived necessity for real-time data.
  • Opsroom: The fourth component “created a new environment for decision making, one modeled after a British WWII war room. It consisted of seven chairs arranged in an inward facing circle flanked by a series of projection screens, each displaying the data collected from the nationalized enterprises. In the Opsroom, all industries were homogenized by a uniform system of iconic representation, meant to facilitate the maximum extraction of information by an individual with a minimal amount of scientific training. […] Although [the Opsroom] never became operational, it quickly captured the imagination of all who viewed it, including members of the military, and became the symbolic heart of the project.

Outcome

Cybersyn never really took off. Stafford had hoped to install “algedonic meters” or early warning public opinion meters in “a representative sample of Chilean homes that would allow Chilean citizens to transmit their pleasure or displeasure with televised political speeches to the government or television studio in real time.”

[Stafford] dubbed this undertaking ‘ The People’s Project ’ and ‘ Project Cyberfolk ’ because he believed the meters would enable the government to respond rapidly to public demands, rather than repress opposing views.

As Cybersyn expanded beyond the initial goals of economic regulation to political-structural transformation, Stafford grew concerned that Cybersyn could prove dangerous if the system wasn’t fully completed and only individual components of the project adopted. He feared this could result in “result in ‘ an old system of government with some new tools … For if the invention is dismantled, and the tools used are not the tools we made, they could become instruments of oppression.” In fact, Stafford soon “received invitations from the repressive governments in Brazil and South Africa to build comparable systems.”

Back in Chile, the Cybernet component of Cybersyn “proved vital to the government during the opposition-led strike of October 1972 (Paro de Octubre).” The strike threatened the government’s survival so high-ranking government officials used Cybernet to monitor “the two thousand telexes sent per day that covered activities from the northern to the southern ends of the country.” In fact, “the rapid flow of messages over the telex lines enabled the government to react quickly to the strike activity  […].”

The project’s telex network was subsequently—albeit briefly—used for economic mapping:

[The] telex network permitted a new form of economic mapping that enabled the government to collapse the data sent from all over the country into a single report, written daily at [headquarters], and hand delivered to [the presidential palace]. The detailed charts and graphs filling its pages provided the government with an overview of national production, transportation, and points of crisis in an easily understood format, using data generated several days earlier. The introduction of this form of reporting represented a considerable advance over the previous six-month lag required to collect statistics on the Chilean economy […].

Ultimately, according to Stafford, Cybersyn did not succeed because it wasn’t accepted as a network of people as well as machines, a revolution in behavior as well as in instrumental capability. In 1973, Allende was overthrown by the military and the Cybersyn project all but vanished from Chilean memory.

Patrick Philippe Meier

19 responses to “Project Cybersyn: Chile 2.0 in 1973

  1. Pingback: Blog of Change » Link selection for February 19th through February 22nd

  2. Pingback: Midweek roundup… « Radical Instrument

  3. Good piece on pathbreaking research on fascinating history.

  4. Hey this is great. Cybersyn has been recovered recently by media and academia in Chile. A nice example is “1973 La vida cotidiana de un año crucial.”

    Also a few relevant actors, like Fernando Flores, are back in the country and hold positions that are having some impacts on academia, government, and tech policies.

    Great, I am fwding to a few chileans and chileanists. :-)

  5. Pingback: On systems, and what they do « Adam Greenfield’s Speedbird

  6. Soon we will create a new computer system to increase efficiency in health care. The system will lower costs and improve central planning. You must submit to your new cybernetic overlords. I call it CyberHealthNet 1.0

  7. Pingback: Silmaril » Workstation best-case scenarios

  8. Pingback: SYNCO - ARTHUR MAGAZINE – WE FOUND THE OTHERS

  9. Pingback: Cybersyn: cibernética y monitorización en los 70 :: Grancomo

  10. Pingback: Project Cybersyn – FutureTechture

  11. Pingback: Pasta&Vinegar » Blog Archive » Cybersyn: a real-time computer-controlled economy

  12. The VSM as a foundation for social systems in the XXI Century —>

    http://www.ototsky.mgn.ru/it/presentations/To_Metaphorum2010.htm

  13. Pingback: Analyze Possible Solutions « Exposing the true Havoc within

  14. Pingback: Intellectual swindlery | Spinor Info

  15. Pingback: The Best of iRevolution: Four Years of Blogging | iRevolution

  16. I don’t get it. Are these viable systems? Bacterium? Tree? Jellyfish? Ant Colony? Ape Colony? Do they fit the VSM?

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s