Inferring International and Internal Migration Patterns from Twitter

My QCRI colleagues Kiran Garimella and Ingmar Weber recently co-authored an important study on migration patterns discerned from Twitter. The study was co-authored with  Bogdan State (Stanford)  and lead author Emilio Zagheni (CUNY). The authors analyzed 500,000 Twitter users based in OECD countries between May 2011 and April 2013. Since Twitter users are not representative of the OECD population, the study uses a “difference-in-differences” approach to reduce selection bias when in out-migration rates for individual countries. The paper is available here and key insights & results are summarized below.

Twitter Migration

To better understand the demographic characteristics of the Twitter users under study, the authors used face recognition software (Face++) to estimate both the gender and age of users based on their profile pictures. “Face++ uses computer vision and data mining techniques applied to a large database of celebrities to generate estimates of age and sex of individuals from their pictures.” The results are depicted below (click to enlarge). Naturally, there is an important degree of uncertainty about estimates for single individuals. “However, when the data is aggregated, as we did in the population pyramid, the uncertainty is substantially reduced, as overestimates and underestimates of age should cancel each other out.” One important limitation is that age estimates may still be biased if users upload younger pictures of themselves, which would result in underestimating the age of the sample population. This is why other methods to infer age (and gender) should also be applied.

Twitter Migration 3

I’m particularly interested in the bias-correction “difference-in-differences” method used in this study, which demonstrates one can still extract meaningful information about trends even though statistical inferences cannot be inferred since the underlying data does not constitute a representative sample. Applying this method yields the following results (click to enlarge):

Twitter Migration 2

The above graph reveals a number of interesting insights. For example, one can observe a decline in out-migration rates from Mexico to other countries, which is consistent with recent estimates from Pew Research Center. Meanwhile, in Southern Europe, the results show that out-migration flows continue to increase for  countries that were/are hit hard by the economic crisis, like Greece.

The results of this study suggest that such methods can be used to “predict turning points in migration trends, which are particularly relevant for migration forecasting.” In addition, the results indicate that “geolocated Twitter data can substantially improve our understanding of the relationships between internal and international migration.” Furthermore, since the study relies in publicly available, real-time data, this approach could also be used to monitor migration trends on an ongoing basis.

To which extent the above is feasible remains to be seen. Very recent mobility data from official statistics are simply not available to more closely calibrate and validate the study’s results. In any event, this study is an important towards addressing a central question that humanitarian organizations are also asking: how can we make statistical inferences from online data when ground-truth data is unavailable as a reference?

I asked Emilio whether techniques like “difference-in-differences” could be used to monitor forced migration. As he noted, there is typically little to no ground truth data available in humanitarian crises. He thus believes that their approach is potentially relevant to evaluate forced migration. That said, he is quick to caution against making generalizations. Their study focused on OECD countries, which represent relatively large samples and high Internet diffusion, which means low selection bias. In contrast, data samples for humanitarian crises tend to be far smaller and highly selected. This means that filtering out the bias may prove more difficult. I hope that this is a challenge that Emilio and his co-authors choose to take on in the near future.


One response to “Inferring International and Internal Migration Patterns from Twitter

  1. Reblogged this on Cem S. Sütcü and commented:
    Bir Twitter araştırması örneği

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s