Tag Archives: Accountability

Could Lonely Planet Render World Bank Projects More Transparent?

That was the unexpected question that my World Bank colleague Johannes Kiess asked me the other day. I was immediately intrigued. So I did some preliminary research and offered to write up a blog post on the idea to solicit some early feedback. According to recent statistics, international tourist arrivals numbered over 1 billion in 2012 alone. Of this population, the demographic that Johannes is interested in comprises those intrepid and socially-conscious backpackers who travel beyond the capitals of developing countries. Perhaps the time is ripe for a new form of tourism: Tourism for Social Good.

tourism_socialmedia

There may be a real opportunity to engage a large crowd because travelers—and in particular the backpacker type—are smartphone savvy, have time on their hands, want to do something meaningful, are eager to get off the beaten track and explore new spaces where others do not typically trek. Johannes believes this approach could be used to map critical social infrastructure and/or to monitor development projects. Consider a simple smartphone app, perhaps integrated with existing travel guide apps or Tripadvisor. The app would ask travelers to record the quality of the roads they take (with the GPS of their smartphone) and provide feedback on the condition, e.g.,  bumpy, even, etc., every 50 miles or so.

They could be asked to find the nearest hospital and take a geotagged picture—a scavenger hunt for development (as Johannes calls it); Geocaching for Good? Note that governments often do not know exactly where schools, hospitals and roads are located. The app could automatically alert travelers of a nearby development project or road financed by the World Bank or other international donor. Travelers could be prompted to take (automatically geo-tagged) pictures that would then be forwarded to development organizations for subsequent visual analysis (which could easily be carried out using microtasking). Perhaps a very simple, 30-second, multiple-choice survey could even be presented to travelers who pass by certain donor-funded development projects. For quality control purposes, these pictures and surveys could easily be triangulated. Simple gamification features could also be added to the app; travelers could gain points for social good tourism—collect 100 points and get your next Lonely Planet guide for free? Perhaps if you’re the first person to record a road within the app, then it could be named after you (of course with a notation of the official name). Even Photosynth could be used to create panoramas of visual evidence.

The obvious advantage of using travelers against the now en vogue stakeholder monitoring approach is that they said bagpackers are already traveling there anyway and have their phones on them to begin with. Plus, they’d be independent third parties and would not need to be trained. This obviously doesn’t mean that the stakeholder approach is not useful. The travelers strategy would simply be complementary. Furthermore, this tourism strategy comes with several key challenges, such as the safety of backpackers who choose to take on this task, for example. But appropriate legal disclaimers could be put in place, so this challenge seems surmountable. In any event, Johannes, together with his colleagues at the World Bank (and I), hope to explore this idea of Tourism for Social Good further in the coming months.

In the meantime, we would be very grateful for feedback. What might we be overlooking? Would you use such an app if it were available? Where can we find reliable statistics on top backpacker destinations and flows?

Bio

See also: 

  • What United Airlines can Teach the World Bank about Mobile Accountability [Link]

Opening World Bank Data with QCRI’s GeoTagger

My colleagues and I at QCRI partnered with the World Bank several months ago to develop an automated GeoTagger platform to increase the transparency and accountability of international development projects by accelerating the process of opening key development and finance data. We are proud to launch the first version of the GeoTagger platform today. The project builds on the Bank’s Open Data Initiatives promoted by former President, Robert Zoellick, and continued under the current leadership of Dr. Jim Yong Kim.

QCRI GeoTagger 1

The Bank has accumulated an extensive amount of socio-economic data as well as a massive amount of data on Bank-sponsored development projects worldwide. Much of this data, however, is not directly usable by the general public due to numerous data format, quality and access issues. The Bank therefore launched their “Mapping for Results” initiative to visualize the location of Bank-financed projects to better monitor development impact, improve aid effectiveness and coordination while enhancing transparency and social accountability. The geo-tagging of this data, however, has been especially time-consuming and tedious. Numerous interns were required to manually read through tens of thousands of dense World Bank project documentation, safeguard documents and results reports to identify and geocode exact project locations. But there are hundreds of thousands of such PDF documents. To make matters worse, these documents make seemingly “random” passing references to project locations, with no sign of any  standardized reporting structure whatsoever.

QCRI GeoTagger 2

The purpose of QCRI’s GeoTagger Beta is to automatically “read” through these countless PDF documents to identify and map all references to locations. GeoTagger does this using the World Bank Projects Data API and the Stanford Name Entity Recognizer (NER) & Alchemy. These tools help to automatically search through documents and identify place names, which are then geocoded using the Google GeocoderYahoo! Placefinder & Geonames and placed on a de-dicated map. QCRI’s GeoTagger will remain freely available and we’ll be making the code open source as well.

Naturally, this platform could be customized for many different datasets and organizations, which is why we’ve already been approached by a number of pro-spective partners to explore other applications. So feel free to get in touch should this also be of interest to your project and/or organization. In the meantime, a very big thank you to my colleagues at QCRI’s Big Data Analytics Center: Dr. Ihab Ilyas, Dr. Shady El-Bassuoni, Mina Farid and last but certainly not least, Ian Ye for their time on this project. Many thanks as well to my colleagues Johannes Kiess, Aleem Walji and team from the World Bank and Stephen Davenport at Development Gateway for the partnership.

bio

 

Big Data for Development: From Information to Knowledge Societies?

Unlike analog information, “digital information inherently leaves a trace that can be analyzed (in real-time or later on).” But the “crux of the ‘Big Data’ paradigm is actually not the increasingly large amount of data itself, but its analysis for intelligent decision-making (in this sense, the term ‘Big Data Analysis’ would actually be more fitting than the term ‘Big Data’ by itself).” Martin Hilbert describes this as the “natural next step in the evolution from the ‘Information Age’ & ‘Information Societies’ to ‘Knowledge Societies’ [...].”

Hilbert has just published this study on the prospects of Big Data for inter-national development. “From a macro-perspective, it is expected that Big Data informed decision-making will have a similar positive effect on efficiency and productivity as ICT have had during the recent decade.” Hilbert references a 2011 study that concluded the following: “firms that adopted Big Data Analysis have output and productivity that is 5–6 % higher than what would be expected given their other investments and information technology usage.” Can these efficiency gains be brought to the unruly world of international development?

To answer this question, Hilbert introduces the above conceptual framework to “systematically review literature and empirical evidence related to the pre-requisites, opportunities and threats of Big Data Analysis for international development.” Words, Locations, Nature and Behavior are types of data that are becoming increasingly available in large volumes.

“Analyzing comments, searches or online posts [i.e., Words] can produce nearly the same results for statistical inference as household surveys and polls.” For example, “the simple number of Google searches for the word ‘unemployment’ in the U.S. correlates very closely with actual unemployment data from the Bureau of Labor Statistics.” Hilbert argues that the tremendous volume of free textual data makes “the work and time-intensive need for statistical sampling seem almost obsolete.” But while the “large amount of data makes the sampling error irrelevant, this does not automatically make the sample representative.” 

The increasing availability of Location data (via GPS-enabled mobile phones or RFIDs) needs no further explanation. Nature refers to data on natural processes such as temperature and rainfall. Behavior denotes activities that can be captured through digital means, such as user-behavior in multiplayer online games or economic affairs, for example. But “studying digital traces might not automatically give us insights into offline dynamics. Besides these biases in the source, the data-cleaning process of unstructured Big Data frequently introduces additional subjectivity.”

The availability and analysis of Big Data is obviously limited in areas with scant access to tangible hardware infrastructure. This corresponds to the “Infra-structure” variable in Hilbert’s framework. “Generic Services” refers to the production, adoption and adaptation of software products, since these are a “key ingredient for a thriving Big Data environment.” In addition, the exploitation of Big Data also requires “data-savvy managers and analysts and deep analytical talent, as well as capabilities in machine learning and computer science.” This corresponds to “Capacities and Knowledge Skills” in the framework.

The third and final side of the framework represents the types of policies that are necessary to actualize the potential of Big Data for international develop-ment. These policies are divided into those that elicit a Positive Feedback Loops such as financial incentives and those that create regulations such as interoperability, that is, Negative Feedback Loops.

The added value of Big Data Analytics is also dependent on the availability of publicly accessible data, i.e., Open Data. Hilbert estimates that a quarter of US government data could be used for Big Data Analysis if it were made available to the public. There is a clear return on investment in opening up this data. On average, governments with “more than 500 publicly available databases on their open data online portals have 2.5 times the per capita income, and 1.5 times more perceived transparency than their counterparts with less than 500 public databases.” The direction of “causality” here is questionable, however.

Hilbert concludes with a warning. The Big Data paradigm “inevitably creates a new dimension of the digital divide: a divide in the capacity to place the analytic treatment of data at the forefront of informed decision-making. This divide does not only refer to the availability of information, but to intelligent decision-making and therefore to a divide in (data-based) knowledge.” While the advent of Big Data Analysis is certainly not a panacea,”in a world where we desperately need further insights into development dynamics, Big Data Analysis can be an important tool to contribute to our understanding of and improve our contributions to manifold development challenges.”

I am troubled by the study’s assumption that we live in a Newtonian world of decision-making in which for every action there is an automatic equal and opposite reaction. The fact of the matter is that the vast majority of development policies and decisions are not based on empirical evidence. Indeed, rigorous evidence-based policy-making and interventions are still very much the exception rather than the rule in international development. Why? “Account-ability is often the unhappy byproduct rather than desirable outcome of innovative analytics. Greater accountability makes people nervous” (Harvard 2013). Moreover, response is always political. But Big Data Analysis runs the risk de-politicize a problem. As Alex de Waal noted over 15 years ago, “one universal tendency stands out: technical solutions are promoted at the expense of political ones.” I hinted at this concern when I first blogged about the UN Global Pulse back in 2009.

In sum, James Scott (one of my heroes) puts it best in his latest book:

“Applying scientific laws and quantitative measurement to most social problems would, modernists believed, eliminate the sterile debates once the ‘facts’ were known. [...] There are, on this account, facts (usually numerical) that require no interpretation. Reliance on such facts should reduce the destructive play of narratives, sentiment, prejudices, habits, hyperbole and emotion generally in public life. [...] Both the passions and the interests would be replaced by neutral, technical judgment. [...] This aspiration was seen as a new ‘civilizing project.’ The reformist, cerebral Progressives in early twentieth-century American and, oddly enough, Lenin as well believed that objective scientific knowledge would allow the ‘administration of things’ to largely replace politics. Their gospel of efficiency, technical training and engineering solutions implied a world directed by a trained, rational, and professional managerial elite. [...].”

“Beneath this appearance, of course, cost-benefit analysis is deeply political. Its politics are buried deep in the techniques [...] how to measure it, in what scale to use, [...] in how observations are translated into numerical values, and in how these numerical values are used in decision making. While fending off charges of bias or favoritism, such techniques [...] succeed brilliantly in entrenching a political agenda at the level of procedures and conventions of calculation that is doubly opaque and inaccessible. [...] Charged with bias, the official can claim, with some truth, that ‘I am just cranking the handle” of a nonpolitical decision-making machine.”

See also:

  • Big Data for Development: Challenges and Opportunities [Link]
  • Beware the Big Errors of Big Data (by Nassim Taleb) [Link]
  • How to Build Resilience Through Big Data [Link]

Evolution in Live Mapping: The 2012 Egyptian Presidential Elections

My doctoral dissertation compared the use of live mapping technology in Egypt and the Sudan during 2010. That year was the first time that Ushahidi was deployed in those two countries. So it is particularly interesting to see the technology used again in both countries in 2012. Sudanese activists are currently using the platform to map #SudanRevolts while Egyptian colleagues have just used the tool to monitor the recent elections in their country.

Analyzing the evolution of live mapping technology use in non-permissive environments ought to make for a very interesting piece of research (any takers?). In the case of Egypt, one could compare the use of the same technology and methods before and after the fall of Mubarak. In 2010, the project was called U-Shahid. This year, the initiative was branded as the “Egypt Elections Project.”

According to my colleagues in Cairo who managed the interactive map, “more than 15 trainers and 75 coordinators were trained to work in the ‘operation room’ supporting 2200 trained observers scattered all over Egypt. More than 17,000 reports, up to 25000 short messages were sent by the observers and shown on Ushahid’s interactive map. Although most reports received shown a minimum amount of serious violations, and most of them were indicating the success of the electoral process, our biggest joy was being able to monitor freely and to report the whole process with full transparency.”

Contrast this situation with how Egyptian activists struggled to keep their Ushahidi project alive under Mubarak in 2010. Last week, the team behind the current live map was actually interviewed by state television (picture above), which was formerly controlled by the old regime. Interestingly, the actual map is no longer the centerpiece of the project when compared to the U-Shahid deploy-ment. The team has included and integrated a lot more rich multimedia content in addition to data, statistics and trends analysis. Moreover, there appears to be a shift towards bounded crowdsourcing rather than open crowd-sourcing as far as election mapping projects go.

These two live mapping projects in Egypt and the Sudan are also getting relatively more traction than those in 2010. Some 17,000 reports were mapped in this year’s election project compared to 2,700 two years ago. Apparently, “millions of users logged into the [Egypt Project Elections] site to check the outcome of the electoral process,” compared to some 40,000 two years ago. Sudanese activists in Khartoum also appear to be far better organized and more agile at leverage social media channels to garner support for their movement than in 2010. Perhaps some of the hard lessons from those resistance efforts were learned.

This learning factor is key and relates to an earlier blog post I wrote on “Technology and Learning, Or Why the Wright Brothers Did Not Create the 747.” Question is: do repressive regimes learn faster or do social movements operate with more agile feedback loops? Indeed, perhaps the technology variable doesn’t matter the most. As I explained to Newsweek a while back, “It is the organiza-tional structure that will matter the most. Rigid structures are unable to adapt as quickly to a rapidly changing environment as a decentralized system. Ultimately, it is a battle of organizational theory.” In the case of Egypt and Sudan today, there’s no doubt that activists in both countries are better organized while the technologies themselves haven’t actually changed much since 2010. But better organization is a necessary, not sufficient, condition to catalyze positive social change and indirect forms of democracy.

Pierre Rosanvallon (2008) indentifies three channels whereby civil society can hold the state accountable during (and in between) elections, and independent of their results.

“The first refers to the various means whereby citizens (or, more accurately, organizations of citizens) are able to monitor and publicize the behavior of elected and appointed rulers; the second to their capacity to mobilize resistance to specific policies, either before or after they have been selected; the third to the trend toward ‘juridification’ of politics when individuals or social groups use the courts and, especially, jury trials to bring delinquent politicians to judgment.”

Live maps and crowdsourcing can be used to monitor and publicize the behavior of politicians. The capacity to mobilize resistance and bring officials to judgment may require a different set of strategies and technologies, however. Those who don’t realize this often leave behind a cemetery of dead maps.

What United Airlines can Teach the World Bank about Mobile Accountability

Flight delays can sometimes lead to interesting discoveries. As my flight to DC was delayed for a third frustrating hour, I picked up the United Airlines in-flight magazine and saw this:

United just launched a novel feedback program that the World Bank and other development organizations may want to emulate given their interest in pro-moting upward accountability. From the United Press Release:

“Behind every great trip is an airline of great people. Now, when you receive excellent customer service from an eligible United [...] employee, you can enter him or her in United’s Outperform Recognition Program. If the employee you enter is a winner in our random drawing for cash prizes, you win, too. With just a few clicks on the United mobile app, you could have the chance to win MileagePlus award miles or even roundtrip tickets.”

“Eligible MileagePlus members can participate in the recognition program using the United mobile app, available for Apple and Android devices, to nominate eligible employees. MileagePlus members simply nominate the employee of their choice through the United mobile app.”

This participatory and crowdsourced recognition program is brilliant for several reasons. First, the focus is on identifying positive deviance rather than generating negative feedback. In other words, it is not a complaints but a rewards system. Second, the program is incentive-based with shared proceeds. Not only do United employees have the chance to make some extra cash (average salary of flight attendants is $36,128), those who nominate employees for outstanding service also share in the proceeds in the form of free tickets and airline miles.

Third, United didn’t develop a new, separate smartphone app or technology for this recognition program; they added the feature directly into the existing United app instead. (That said, they ought to give passengers the option of submitting an entry via United’s website as well since not everyone will be comfortable using a smartphone app). I’d also recommend they make some of the submissions available on a decidate section of the United website to give users the option to browse through some of the feedback (and even digg up those they like the most).

I wonder whether other airlines in the StarAlliance network will adopt the same (or similar) recognition program. I also wonder whether donors like the World Bank ought to develop a similar solution (perhaps SMS-based) and require the use of this service for all projects funded by the Bank.

Harnessing Social Media Tools to Fight Corruption

I had the distinct pleasure of being interviewed for this report on Harnessing Social Media Tools to Fight Corruption (PDF). The study was prepared by Dana Bekri, Brynne Dunn, Isik Oguzertem, Yan Su and Shivani Upreti as part of a final project for their degree from the Department of International Development at the London School of Economics and Political Science (LSE). The report was prepared for Transparency International (TI).

As part of this project, the authors compiled a very useful database of projects that apply social tools to create greater transparency and accountability around corruption issues. The authors recommend that TI draw on this list of projects to catalyze an active network of civil society initiatives that challenge corruption. The report also includes an interesting section on Mobilizing Volunteers and considers the role of volunteer networks as important in the fight against corruption. The authors write that,

“As an essential expression of citizenship and democracy, the past 25 years have seen rapid growth in the practice of volunteering worldwide. One study reports approximately 20.8 million volunteers in 37 countries, contributing US$ 400 billion to the world economy. The increasing enthusiasm of individuals to serve a cause while improving their own skills complements key goals of civil society organisations to build a strong volunteer force.”

This of course relates directly to the Standby Volunteer Task Force (SBTF), so I’m always keen to learn more about lessons learned and best practices in catalyzing a thriving volunteer network.

Do let me know if you’d like to get in touch with the authors, I’d be happy to provide an introduction via email.